"""Defines time dependencies of injected electromagnetic sources."""
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Optional, Union
import numpy as np
import pydantic.v1 as pydantic
from ...constants import HERTZ
from ...exceptions import ValidationError
from ..data.data_array import TimeDataArray
from ..data.dataset import TimeDataset
from ..data.validators import validate_no_nans
from ..time import AbstractTimeDependence
from ..types import (
ArrayComplex1D,
ArrayFloat1D,
Ax,
FreqBound,
PlotVal,
)
from ..validators import warn_if_dataset_none
from ..viz import add_ax_if_none
# how many units of ``twidth`` from the ``offset`` until a gaussian pulse is considered "off"
END_TIME_FACTOR_GAUSSIAN = 10
class SourceTime(AbstractTimeDependence):
"""Base class describing the time dependence of a source."""
@add_ax_if_none
def plot_spectrum(
self,
times: ArrayFloat1D,
num_freqs: int = 101,
val: PlotVal = "real",
ax: Ax = None,
) -> Ax:
"""Plot the complex-valued amplitude of the source time-dependence.
Note: Only the real part of the time signal is used.
Parameters
----------
times : np.ndarray
Array of evenly-spaced times (seconds) to evaluate source time-dependence at.
The spectrum is computed from this value and the source time frequency content.
To see source spectrum for a specific :class:`Simulation`,
pass ``simulation.tmesh``.
num_freqs : int = 101
Number of frequencies to plot within the SourceTime.frequency_range.
ax : matplotlib.axes._subplots.Axes = None
Matplotlib axes to plot on, if not specified, one is created.
Returns
-------
matplotlib.axes._subplots.Axes
The supplied or created matplotlib axes.
"""
fmin, fmax = self.frequency_range()
return self.plot_spectrum_in_frequency_range(
times, fmin, fmax, num_freqs=num_freqs, val=val, ax=ax
)
@abstractmethod
def frequency_range(self, num_fwidth: float = 4.0) -> FreqBound:
"""Frequency range within plus/minus ``num_fwidth * fwidth`` of the central frequency."""
@abstractmethod
def end_time(self) -> Optional[float]:
"""Time after which the source is effectively turned off / close to zero amplitude."""
class Pulse(SourceTime, ABC):
"""A source time that ramps up with some ``fwidth`` and oscillates at ``freq0``."""
freq0: pydantic.PositiveFloat = pydantic.Field(
..., title="Central Frequency", description="Central frequency of the pulse.", units=HERTZ
)
fwidth: pydantic.PositiveFloat = pydantic.Field(
...,
title="",
description="Standard deviation of the frequency content of the pulse.",
units=HERTZ,
)
offset: float = pydantic.Field(
5.0,
title="Offset",
description="Time delay of the maximum value of the "
"pulse in units of 1 / (``2pi * fwidth``).",
ge=2.5,
)
@property
def twidth(self) -> float:
"""Width of pulse in seconds."""
return 1.0 / (2 * np.pi * self.fwidth)
def frequency_range(self, num_fwidth: float = 4.0) -> FreqBound:
"""Frequency range within 5 standard deviations of the central frequency.
Parameters
----------
num_fwidth : float = 4.
Frequency range defined as plus/minus ``num_fwidth * self.fwdith``.
Returns
-------
Tuple[float, float]
Minimum and maximum frequencies of the :class:`GaussianPulse` or :class:`ContinuousWave`
power.
"""
freq_width_range = num_fwidth * self.fwidth
freq_min = max(0, self.freq0 - freq_width_range)
freq_max = self.freq0 + freq_width_range
return (freq_min, freq_max)
[docs]
class GaussianPulse(Pulse):
"""Source time dependence that describes a Gaussian pulse.
Example
-------
>>> pulse = GaussianPulse(freq0=200e12, fwidth=20e12)
"""
remove_dc_component: bool = pydantic.Field(
True,
title="Remove DC Component",
description="Whether to remove the DC component in the Gaussian pulse spectrum. "
"If ``True``, the Gaussian pulse is modified at low frequencies to zero out the "
"DC component, which is usually desirable so that the fields will decay. However, "
"for broadband simulations, it may be better to have non-vanishing source power "
"near zero frequency. Setting this to ``False`` results in an unmodified Gaussian "
"pulse spectrum which can have a nonzero DC component.",
)
[docs]
def amp_time(self, time: float) -> complex:
"""Complex-valued source amplitude as a function of time."""
omega0 = 2 * np.pi * self.freq0
time_shifted = time - self.offset * self.twidth
offset = np.exp(1j * self.phase)
oscillation = np.exp(-1j * omega0 * time)
amp = np.exp(-(time_shifted**2) / 2 / self.twidth**2) * self.amplitude
pulse_amp = offset * oscillation * amp
# subtract out DC component
if self.remove_dc_component:
pulse_amp = pulse_amp * (1j + time_shifted / self.twidth**2 / omega0)
else:
# 1j to make it agree in large omega0 limit
pulse_amp = pulse_amp * 1j
return pulse_amp
[docs]
def end_time(self) -> Optional[float]:
"""Time after which the source is effectively turned off / close to zero amplitude."""
# TODO: decide if we should continue to return an end_time if the DC component remains
# if not self.remove_dc_component:
# return None
return self.offset * self.twidth + END_TIME_FACTOR_GAUSSIAN * self.twidth
@property
def amp_complex(self) -> complex:
"""Grab the complex amplitude from a ``GaussianPulse``."""
phase = np.exp(1j * self.phase)
return self.amplitude * phase
[docs]
@classmethod
def from_amp_complex(cls, amp: complex, **kwargs) -> GaussianPulse:
"""Set the complex amplitude of a ``GaussianPulse``.
Parameters
----------
amp : complex
Complex-valued amplitude to set in the returned ``GaussianPulse``.
kwargs : dict
Keyword arguments passed to ``GaussianPulse()``, excluding ``amplitude`` & ``phase``.
"""
amplitude = abs(amp)
phase = np.angle(amp)
return cls(amplitude=amplitude, phase=phase, **kwargs)
[docs]
@classmethod
def from_frequency_range(
cls, fmin: pydantic.PositiveFloat, fmax: pydantic.PositiveFloat, **kwargs
) -> GaussianPulse:
"""Create a ``GaussianPulse`` that maximizes its amplitude in the frequency range [fmin, fmax].
Parameters
----------
fmin : float
Lower bound of frequency of interest.
fmax : float
Upper bound of frequency of interest.
kwargs : dict
Keyword arguments passed to ``GaussianPulse()``, excluding ``freq0`` & ``fwidth``.
Returns
-------
GaussianPulse
A ``GaussianPulse`` that maximizes its amplitude in the frequency range [fmin, fmax].
"""
# validate that fmin and fmax must positive, and fmax > fmin
if fmin <= 0:
raise ValidationError("'fmin' must be positive.")
if fmax <= fmin:
raise ValidationError("'fmax' must be greater than 'fmin'.")
# frequency range and center
freq_range = fmax - fmin
freq_center = (fmax + fmin) / 2.0
# If remove_dc_component=False, simply return the standard GaussianPulse parameters
if kwargs.get("remove_dc_component", True) is False:
return cls(freq0=freq_center, fwidth=freq_range / 2.0, **kwargs)
# If remove_dc_component=True, the Gaussian pulse is distorted
kwargs.update({"remove_dc_component": True})
log_ratio = np.log(fmax / fmin)
coeff = ((1 + log_ratio**2) ** 0.5 - 1) / 2.0
freq0 = freq_center - coeff / log_ratio * freq_range
fwidth = freq_range / log_ratio * coeff**0.5
return cls(freq0=freq0, fwidth=fwidth, **kwargs)
[docs]
class ContinuousWave(Pulse):
"""Source time dependence that ramps up to continuous oscillation
and holds until end of simulation.
Note
----
Field decay will not occur, so the simulation will run for the full ``run_time``.
Also, source normalization of frequency-domain monitors is not meaningful.
Example
-------
>>> cw = ContinuousWave(freq0=200e12, fwidth=20e12)
"""
[docs]
def amp_time(self, time: float) -> complex:
"""Complex-valued source amplitude as a function of time."""
twidth = 1.0 / (2 * np.pi * self.fwidth)
omega0 = 2 * np.pi * self.freq0
time_shifted = time - self.offset * twidth
const = 1.0
offset = np.exp(1j * self.phase)
oscillation = np.exp(-1j * omega0 * time)
amp = 1 / (1 + np.exp(-time_shifted / twidth)) * self.amplitude
return const * offset * oscillation * amp
[docs]
def end_time(self) -> Optional[float]:
"""Time after which the source is effectively turned off / close to zero amplitude."""
return None
[docs]
class CustomSourceTime(Pulse):
"""Custom source time dependence consisting of a real or complex envelope
modulated at a central frequency, as shown below.
Note
----
.. math::
amp\\_time(t) = amplitude \\cdot \\
e^{i \\cdot phase - 2 \\pi i \\cdot freq0 \\cdot t} \\cdot \\
envelope(t - offset / (2 \\pi \\cdot fwidth))
Note
----
Depending on the envelope, field decay may not occur.
If field decay does not occur, then the simulation will run for the full ``run_time``.
Also, if field decay does not occur, then source normalization of frequency-domain
monitors is not meaningful.
Note
----
The source time dependence is linearly interpolated to the simulation time steps.
The sampling rate should be sufficiently fast that this interpolation does not
introduce artifacts. The source time dependence should also start at zero and ramp up smoothly.
The first and last values of the envelope will be used for times that are out of range
of the provided data.
Example
-------
>>> cst = CustomSourceTime.from_values(freq0=1, fwidth=0.1,
... values=np.linspace(0, 9, 10), dt=0.1)
"""
offset: float = pydantic.Field(
0.0,
title="Offset",
description="Time delay of the envelope in units of 1 / (``2pi * fwidth``).",
)
source_time_dataset: Optional[TimeDataset] = pydantic.Field(
...,
title="Source time dataset",
description="Dataset for storing the envelope of the custom source time. "
"This envelope will be modulated by a complex exponential at frequency ``freq0``.",
)
_no_nans_dataset = validate_no_nans("source_time_dataset")
_source_time_dataset_none_warning = warn_if_dataset_none("source_time_dataset")
@pydantic.validator("source_time_dataset", always=True)
def _more_than_one_time(cls, val):
"""Must have more than one time to interpolate."""
if val is None:
return val
if val.values.size <= 1:
raise ValidationError("'CustomSourceTime' must have more than one time coordinate.")
return val
[docs]
@classmethod
def from_values(
cls, freq0: float, fwidth: float, values: ArrayComplex1D, dt: float
) -> CustomSourceTime:
"""Create a :class:`.CustomSourceTime` from a numpy array.
Parameters
----------
freq0 : float
Central frequency of the source. The envelope provided will be modulated
by a complex exponential at this frequency.
fwidth : float
Estimated frequency width of the source.
values: ArrayComplex1D
Complex values of the source envelope.
dt: float
Time step for the ``values`` array. This value should be sufficiently small
that the interpolation to simulation time steps does not introduce artifacts.
Returns
-------
CustomSourceTime
:class:`.CustomSourceTime` with envelope given by ``values``, modulated by a complex
exponential at frequency ``freq0``. The time coordinates are evenly spaced
between ``0`` and ``dt * (N-1)`` with a step size of ``dt``, where ``N`` is the length of
the values array.
"""
times = np.arange(len(values)) * dt
source_time_dataarray = TimeDataArray(values, coords=dict(t=times))
source_time_dataset = TimeDataset(values=source_time_dataarray)
return CustomSourceTime(
freq0=freq0,
fwidth=fwidth,
source_time_dataset=source_time_dataset,
)
@property
def data_times(self) -> ArrayFloat1D:
"""Times of envelope definition."""
if self.source_time_dataset is None:
return []
data_times = self.source_time_dataset.values.coords["t"].values.squeeze()
return data_times
def _all_outside_range(self, run_time: float) -> bool:
"""Whether all times are outside range of definition."""
# can't validate if data isn't loaded
if self.source_time_dataset is None:
return False
# make time a numpy array for uniform handling
data_times = self.data_times
# shift time
twidth = 1.0 / (2 * np.pi * self.fwidth)
max_time_shifted = run_time - self.offset * twidth
min_time_shifted = -self.offset * twidth
return (max_time_shifted < min(data_times)) | (min_time_shifted > max(data_times))
[docs]
def amp_time(self, time: float) -> complex:
"""Complex-valued source amplitude as a function of time.
Parameters
----------
time : float
Time in seconds.
Returns
-------
complex
Complex-valued source amplitude at that time.
"""
if self.source_time_dataset is None:
return None
# make time a numpy array for uniform handling
times = np.array([time] if isinstance(time, (int, float)) else time)
data_times = self.data_times
# shift time
twidth = 1.0 / (2 * np.pi * self.fwidth)
time_shifted = times - self.offset * twidth
# mask times that are out of range
mask = (time_shifted < min(data_times)) | (time_shifted > max(data_times))
# get envelope
envelope = np.zeros(len(time_shifted), dtype=complex)
values = self.source_time_dataset.values
envelope[mask] = values.sel(t=time_shifted[mask], method="nearest").to_numpy()
if not all(mask):
envelope[~mask] = values.interp(t=time_shifted[~mask]).to_numpy()
# modulation, phase, amplitude
omega0 = 2 * np.pi * self.freq0
offset = np.exp(1j * self.phase)
oscillation = np.exp(-1j * omega0 * times)
amp = self.amplitude
return offset * oscillation * amp * envelope
[docs]
def end_time(self) -> Optional[float]:
"""Time after which the source is effectively turned off / close to zero amplitude."""
if self.source_time_dataset is None:
return None
data_array = self.source_time_dataset.values
t_coords = data_array.coords["t"]
source_is_non_zero = ~np.isclose(abs(data_array), 0)
t_non_zero = t_coords[source_is_non_zero]
return np.max(t_non_zero)
SourceTimeType = Union[GaussianPulse, ContinuousWave, CustomSourceTime]