"""Defines heat simulation data class"""
from __future__ import annotations
from typing import Tuple
import numpy as np
import pydantic.v1 as pd
from ....exceptions import DataError
from ...base_sim.data.sim_data import AbstractSimulationData
from ...data.data_array import SpatialDataArray
from ...data.dataset import TetrahedralGridDataset, TriangularGridDataset, UnstructuredGridDataset
from ...types import Ax, Literal, RealFieldVal
from ...viz import add_ax_if_none, equal_aspect
from ..simulation import HeatSimulation
from .monitor_data import HeatMonitorDataType, TemperatureData
[docs]
class HeatSimulationData(AbstractSimulationData):
"""Stores results of a heat simulation.
Example
-------
>>> from tidy3d import Medium, SolidSpec, FluidSpec, UniformUnstructuredGrid, SpatialDataArray
>>> from tidy3d import Structure, Box, UniformUnstructuredGrid, UniformHeatSource
>>> from tidy3d import StructureBoundary, TemperatureBC, TemperatureMonitor, TemperatureData
>>> from tidy3d import HeatBoundarySpec
>>> import numpy as np
>>> temp_mnt = TemperatureMonitor(size=(1, 2, 3), name="sample")
>>> heat_sim = HeatSimulation(
... size=(3.0, 3.0, 3.0),
... structures=[
... Structure(
... geometry=Box(size=(1, 1, 1), center=(0, 0, 0)),
... medium=Medium(
... permittivity=2.0, heat_spec=SolidSpec(
... conductivity=1,
... capacity=1,
... )
... ),
... name="box",
... ),
... ],
... medium=Medium(permittivity=3.0, heat_spec=FluidSpec()),
... grid_spec=UniformUnstructuredGrid(dl=0.1),
... sources=[UniformHeatSource(rate=1, structures=["box"])],
... boundary_spec=[
... HeatBoundarySpec(
... placement=StructureBoundary(structure="box"),
... condition=TemperatureBC(temperature=500),
... )
... ],
... monitors=[temp_mnt],
... )
>>> x = [1,2]
>>> y = [2,3,4]
>>> z = [3,4,5,6]
>>> coords = dict(x=x, y=y, z=z)
>>> temp_array = SpatialDataArray(300 * np.abs(np.random.random((2,3,4))), coords=coords)
>>> temp_mnt_data = TemperatureData(monitor=temp_mnt, temperature=temp_array)
>>> heat_sim_data = HeatSimulationData(
... simulation=heat_sim, data=[temp_mnt_data],
... )
"""
simulation: HeatSimulation = pd.Field(
title="Heat Simulation",
description="Original :class:`.HeatSimulation` associated with the data.",
)
data: Tuple[HeatMonitorDataType, ...] = pd.Field(
...,
title="Monitor Data",
description="List of :class:`.MonitorData` instances "
"associated with the monitors of the original :class:`.Simulation`.",
)
[docs]
@equal_aspect
@add_ax_if_none
def plot_field(
self,
monitor_name: str,
val: RealFieldVal = "real",
scale: Literal["lin", "log"] = "lin",
structures_alpha: float = 0.2,
robust: bool = True,
vmin: float = None,
vmax: float = None,
ax: Ax = None,
**sel_kwargs,
) -> Ax:
"""Plot the data for a monitor with simulation plot overlaid.
Parameters
----------
field_monitor_name : str
Name of :class:`.TemperatureMonitorData` to plot.
val : Literal['real', 'abs', 'abs^2'] = 'real'
Which part of the field to plot.
scale : Literal['lin', 'log']
Plot in linear or logarithmic scale.
structures_alpha : float = 0.2
Opacity of the structure permittivity.
Must be between 0 and 1 (inclusive).
robust : bool = True
If True and vmin or vmax are absent, uses the 2nd and 98th percentiles of the data
to compute the color limits. This helps in visualizing the field patterns especially
in the presence of a source.
vmin : float = None
The lower bound of data range that the colormap covers. If ``None``, they are
inferred from the data and other keyword arguments.
vmax : float = None
The upper bound of data range that the colormap covers. If ``None``, they are
inferred from the data and other keyword arguments.
ax : matplotlib.axes._subplots.Axes = None
matplotlib axes to plot on, if not specified, one is created.
sel_kwargs : keyword arguments used to perform ``.sel()`` selection in the monitor data.
These kwargs can select over the spatial dimensions (``x``, ``y``, ``z``),
or time dimension (``t``) if applicable.
For the plotting to work appropriately, the resulting data after selection must contain
only two coordinates with len > 1.
Furthermore, these should be spatial coordinates (``x``, ``y``, or ``z``).
Returns
-------
matplotlib.axes._subplots.Axes
The supplied or created matplotlib axes.
"""
monitor_data = self[monitor_name]
if not isinstance(monitor_data, TemperatureData):
raise DataError(
f"Monitor '{monitor_name}' (type '{monitor_data.monitor.type}') is not a "
f"'TemperatureMonitor'."
)
if monitor_data.temperature is None:
raise DataError(f"No data to plot for monitor '{monitor_name}'.")
field_data = self._field_component_value(monitor_data.temperature, val)
if val == "abs^2":
field_name = "|T|ยฒ, Kยฒ"
else:
field_name = "T, K"
if scale == "log":
field_data = np.log10(np.abs(field_data))
cmap = "coolwarm"
# do sel on unstructured data
# it could produce either SpatialDataArray or UnstructuredGridDatasetType
if isinstance(field_data, UnstructuredGridDataset) and len(sel_kwargs) > 0:
field_data = field_data.sel(**sel_kwargs)
if isinstance(field_data, TetrahedralGridDataset):
raise DataError(
"Must select a two-dimensional slice of unstructured dataset for plotting"
" on a plane."
)
if isinstance(field_data, TriangularGridDataset):
field_data.plot(
ax=ax,
cmap=cmap,
vmin=vmin,
vmax=vmax,
cbar_kwargs={"label": field_name},
grid=False,
)
# compute parameters for structures overlay plot
axis = field_data.normal_axis
position = field_data.normal_pos
# compute plot bounds
field_data_bounds = field_data.bounds
min_bounds = list(field_data_bounds[0])
max_bounds = list(field_data_bounds[1])
min_bounds.pop(axis)
max_bounds.pop(axis)
if isinstance(field_data, SpatialDataArray):
# interp out any monitor.size==0 dimensions
monitor = self.simulation.get_monitor_by_name(monitor_name)
thin_dims = {
"xyz"[dim]: monitor.center[dim]
for dim in range(3)
if monitor.size[dim] == 0 and "xyz"[dim] not in sel_kwargs
}
for axis, pos in thin_dims.items():
if field_data.coords[axis].size <= 1:
field_data = field_data.sel(**{axis: pos}, method="nearest")
else:
field_data = field_data.interp(**{axis: pos}, kwargs=dict(bounds_error=True))
# select the extra coordinates out of the data from user-specified kwargs
for coord_name, coord_val in sel_kwargs.items():
if field_data.coords[coord_name].size <= 1:
field_data = field_data.sel(**{coord_name: coord_val}, method=None)
else:
field_data = field_data.interp(
**{coord_name: coord_val}, kwargs=dict(bounds_error=True)
)
field_data = field_data.squeeze(drop=True)
non_scalar_coords = {name: c for name, c in field_data.coords.items() if c.size > 1}
# assert the data is valid for plotting
if len(non_scalar_coords) != 2:
raise DataError(
f"Data after selection has {len(non_scalar_coords)} coordinates "
f"({list(non_scalar_coords.keys())}), "
"must be 2 spatial coordinates for plotting on plane. "
"Please add keyword arguments to 'plot_monitor_data()' to select out the other coords."
)
spatial_coords_in_data = {
coord_name: (coord_name in non_scalar_coords) for coord_name in "xyz"
}
if sum(spatial_coords_in_data.values()) != 2:
raise DataError(
"All coordinates in the data after selection must be spatial (x, y, z), "
f" given {non_scalar_coords.keys()}."
)
# get the spatial coordinate corresponding to the plane
planar_coord = [name for name, c in spatial_coords_in_data.items() if c is False][0]
axis = "xyz".index(planar_coord)
position = float(field_data.coords[planar_coord])
xy_coord_labels = list("xyz")
xy_coord_labels.pop(axis)
x_coord_label, y_coord_label = xy_coord_labels[0], xy_coord_labels[1]
field_data.plot(
ax=ax,
x=x_coord_label,
y=y_coord_label,
cmap=cmap,
vmin=vmin,
vmax=vmax,
robust=robust,
cbar_kwargs={"label": field_name},
)
# compute plot bounds
x_coord_values = field_data.coords[x_coord_label]
y_coord_values = field_data.coords[y_coord_label]
min_bounds = (min(x_coord_values), min(y_coord_values))
max_bounds = (max(x_coord_values), max(y_coord_values))
# select the cross section data
interp_kwarg = {"xyz"[axis]: position}
# plot the simulation heat conductivity
ax = self.simulation.scene.plot_structures_heat_conductivity(
cbar=False,
alpha=structures_alpha,
ax=ax,
**interp_kwarg,
)
# set the limits based on the xarray coordinates min and max
ax.set_xlim(min_bounds[0], max_bounds[0])
ax.set_ylim(min_bounds[1], max_bounds[1])
return ax