tidy3d.PECMedium#

class PECMedium[source]#

Bases: AbstractMedium

Perfect electrical conductor class.

Parameters:
  • attrs (dict = {}) โ€“ Dictionary storing arbitrary metadata for a Tidy3D object. This dictionary can be freely used by the user for storing data without affecting the operation of Tidy3D as it is not used internally. Note that, unlike regular Tidy3D fields, attrs are mutable. For example, the following is allowed for setting an attr obj.attrs['foo'] = bar. Also note that Tidy3D` will raise a TypeError if attrs contain objects that can not be serialized. One can check if attrs are serializable by calling obj.json().

  • name (Optional[str] = None) โ€“ Optional unique name for medium.

  • frequency_range (Optional[Tuple[float, float]] = None) โ€“ [units = (Hz, Hz)]. Optional range of validity for the medium.

  • allow_gain (bool = False) โ€“ Allow the medium to be active. Caution: simulations with a gain medium are unstable, and are likely to diverge.Simulations where โ€˜allow_gainโ€™ is set to โ€˜Trueโ€™ will still be charged even if diverged. Monitor data up to the divergence point will still be returned and can be useful in some cases.

  • nonlinear_spec (Union[NonlinearSpec, NonlinearSusceptibility] = None) โ€“ Nonlinear spec applied on top of the base medium properties.

  • modulation_spec (Optional[ModulationSpec] = None) โ€“ Modulation spec applied on top of the base medium properties.

  • heat_spec (Union[FluidSpec, SolidSpec, NoneType] = None) โ€“ Specification of the medium heat properties. They are used for solving the heat equation via the HeatSimulation interface. Such simulations can be used for investigating the influence of heat propagation on the properties of optical systems. Once the temperature distribution in the system is found using HeatSimulation object, Simulation.perturbed_mediums_copy() can be used to convert mediums with perturbation models defined into spatially dependent custom mediums. Otherwise, the heat_spec does not directly affect the running of an optical Simulation.

Note

To avoid confusion from duplicate PECs, must import tidy3d.PEC instance directly.

Attributes

is_pec

Whether the medium is a PEC.

n_cfl

This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by n_cfl.

attrs

Methods

eps_model(frequency)

Complex-valued permittivity as a function of frequency.

Inherited Common Usage

eps_model(frequency)[source]#

Complex-valued permittivity as a function of frequency.

Parameters:

frequency (float) โ€“ Frequency to evaluate permittivity at (Hz).

Returns:

Complex-valued relative permittivity evaluated at frequency.

Return type:

complex

property n_cfl#

This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesnโ€™t take material factor into account is multiplied by n_cfl.

property is_pec#

Whether the medium is a PEC.

__hash__()#

Hash method.