tidy3d.HeatChargeSimulationData#
- class HeatChargeSimulationData[source]#
Bases:
AbstractSimulationData
Stores results of a
HeatChargeSimulation
.- Parameters:
attrs (dict = {}) – Dictionary storing arbitrary metadata for a Tidy3D object. This dictionary can be freely used by the user for storing data without affecting the operation of Tidy3D as it is not used internally. Note that, unlike regular Tidy3D fields,
attrs
are mutable. For example, the following is allowed for setting anattr
obj.attrs['foo'] = bar
. Also note that Tidy3D` will raise aTypeError
ifattrs
contain objects that can not be serialized. One can check ifattrs
are serializable by callingobj.json()
.simulation (HeatChargeSimulation) – Original
HeatChargeSimulation
associated with the data.data (Tuple[Annotated[Union[tidy3d.components.tcad.data.monitor_data.heat.TemperatureData, tidy3d.components.tcad.data.monitor_data.charge.SteadyPotentialData, tidy3d.components.tcad.data.monitor_data.charge.SteadyFreeCarrierData, tidy3d.components.tcad.data.monitor_data.charge.SteadyCapacitanceData], FieldInfo(default=PydanticUndefined, discriminator='type', extra={})], ...]) – List of
MonitorData
instances associated with the monitors of the originalSimulation
.log (Optional[str] = None) – A string containing the log information from the simulation run.
device_characteristics (Optional[DeviceCharacteristics] = None) – Data characterizing the device. Current characteristics include: ‘steady_dc_hole_capacitance’, ‘steady_dc_electron_capacitance’, and ‘steady_dc_current_voltage’
Example
>>> import tidy3d as td >>> import numpy as np >>> temp_mnt = td.TemperatureMonitor(size=(1, 2, 3), name="sample") >>> heat_sim = HeatChargeSimulation( ... size=(3.0, 3.0, 3.0), ... structures=[ ... td.Structure( ... geometry=td.Box(size=(1, 1, 1), center=(0, 0, 0)), ... medium=td.Medium( ... permittivity=2.0, heat_spec=td.SolidSpec( ... conductivity=1, ... capacity=1, ... ) ... ), ... name="box", ... ), ... ], ... medium=td.Medium(permittivity=3.0, heat_spec=td.FluidSpec()), ... grid_spec=td.UniformUnstructuredGrid(dl=0.1), ... sources=[td.HeatSource(rate=1, structures=["box"])], ... boundary_spec=[ ... td.HeatChargeBoundarySpec( ... placement=td.StructureBoundary(structure="box"), ... condition=td.TemperatureBC(temperature=500), ... ) ... ], ... monitors=[temp_mnt], ... ) >>> x = [1,2] >>> y = [2,3,4] >>> z = [3,4,5,6] >>> coords = dict(x=x, y=y, z=z) >>> temp_array = td.SpatialDataArray(300 * np.abs(np.random.random((2,3,4))), coords=coords) >>> temp_mnt_data = td.TemperatureData(monitor=temp_mnt, temperature=temp_array) >>> heat_sim_data = td.HeatChargeSimulationData( ... simulation=heat_sim, data=[temp_mnt_data], ... )
Attributes
Methods
plot_field
(monitor_name[, field_name, val, ...])Plot the data for a monitor with simulation plot overlaid.
Inherited Common Usage
- simulation#
- data#
- device_characteristics#
- plot_field(monitor_name, field_name=None, val='real', scale='lin', structures_alpha=0.2, robust=True, vmin=None, vmax=None, ax=None, **sel_kwargs)[source]#
Plot the data for a monitor with simulation plot overlaid.
- Parameters:
field_monitor_name (str) – Name of
TemperatureMonitorData
to plot.field_name (Optional[Literal["temperature", "potential"]] = None) – Name of
field
component to plot (eg. ‘temperature’). Not required if monitor data contains only one field.val (Literal['real', 'abs', 'abs^2'] = 'real') – Which part of the field to plot.
scale (Literal['lin', 'log']) – Plot in linear or logarithmic scale.
structures_alpha (float = 0.2) – Opacity of the structure permittivity. Must be between 0 and 1 (inclusive).
robust (bool = True) – If True and vmin or vmax are absent, uses the 2nd and 98th percentiles of the data to compute the color limits. This helps in visualizing the field patterns especially in the presence of a source.
vmin (float = None) – The lower bound of data range that the colormap covers. If
None
, they are inferred from the data and other keyword arguments.vmax (float = None) – The upper bound of data range that the colormap covers. If
None
, they are inferred from the data and other keyword arguments.ax (matplotlib.axes._subplots.Axes = None) – matplotlib axes to plot on, if not specified, one is created.
sel_kwargs (keyword arguments used to perform
.sel()
selection in the monitor data.) – These kwargs can select over the spatial dimensions (x
,y
,z
), or time dimension (t
) if applicable. For the plotting to work appropriately, the resulting data after selection must contain only two coordinates with len > 1. Furthermore, these should be spatial coordinates (x
,y
, orz
).
- Returns:
The supplied or created matplotlib axes.
- Return type:
matplotlib.axes._subplots.Axes
- __hash__()#
Hash method.