tidy3d.CustomDebye#
- class CustomDebye[source]#
Bases:
CustomDispersiveMedium
,Debye
A spatially varying dispersive medium described by the Debye model.
- Parameters:
attrs (dict = {}) β Dictionary storing arbitrary metadata for a Tidy3D object. This dictionary can be freely used by the user for storing data without affecting the operation of Tidy3D as it is not used internally. Note that, unlike regular Tidy3D fields,
attrs
are mutable. For example, the following is allowed for setting anattr
obj.attrs['foo'] = bar
. Also note that Tidy3D` will raise aTypeError
ifattrs
contain objects that can not be serialized. One can check ifattrs
are serializable by callingobj.json()
.name (Optional[str] = None) β Optional unique name for medium.
frequency_range (Optional[Tuple[float, float]] = None) β [units = (Hz, Hz)]. Optional range of validity for the medium.
allow_gain (bool = False) β Allow the medium to be active. Caution: simulations with a gain medium are unstable, and are likely to diverge.Simulations where βallow_gainβ is set to βTrueβ will still be charged even if diverged. Monitor data up to the divergence point will still be returned and can be useful in some cases.
nonlinear_spec (Union[NonlinearSpec, NonlinearSusceptibility] = None) β Nonlinear spec applied on top of the base medium properties.
modulation_spec (Optional[ModulationSpec] = None) β Modulation spec applied on top of the base medium properties.
heat_spec (Union[FluidSpec, SolidSpec, NoneType] = None) β Specification of the medium heat properties. They are used for solving the heat equation via the
HeatSimulation
interface. Such simulations can be used for investigating the influence of heat propagation on the properties of optical systems. Once the temperature distribution in the system is found usingHeatSimulation
object,Simulation.perturbed_mediums_copy()
can be used to convert mediums with perturbation models defined into spatially dependent custom mediums. Otherwise, theheat_spec
does not directly affect the running of an opticalSimulation
.eps_inf (Union[SpatialDataArray, Annotated[Union[tidy3d.components.data.dataset.TriangularGridDataset, tidy3d.components.data.dataset.TetrahedralGridDataset], FieldInfo(default=PydanticUndefined, discriminator='type', extra={})]]) β [units = None (relative permittivity)]. Relative permittivity at infinite frequency (\(\epsilon_\infty\)).
coeffs (Tuple[Tuple[Union[tidy3d.components.data.data_array.SpatialDataArray, Annotated[Union[tidy3d.components.data.dataset.TriangularGridDataset, tidy3d.components.data.dataset.TetrahedralGridDataset], FieldInfo(default=PydanticUndefined, discriminator='type', extra={})]], Union[tidy3d.components.data.data_array.SpatialDataArray, Annotated[Union[tidy3d.components.data.dataset.TriangularGridDataset, tidy3d.components.data.dataset.TetrahedralGridDataset], FieldInfo(default=PydanticUndefined, discriminator='type', extra={})]]], ...]) β [units = (None (relative permittivity), sec)]. List of (\(\Delta\epsilon_i, \tau_i\)) values for model.
interp_method (Literal['nearest', 'linear'] = nearest) β Interpolation method to obtain permittivity values that are not supplied at the Yee grids; For grids outside the range of the supplied data, extrapolation will be applied. When the extrapolated value is smaller (greater) than the minimal (maximal) of the supplied data, the extrapolated value will take the minimal (maximal) of the supplied data.
subpixel (bool = False) β If
True
, apply the subpixel averaging method specified bySimulation
βs fieldsubpixel
for this type of material on the interface of the structure, including exterior boundary and intersection interfaces with other structures.
Notes
The frequency-dependence of the complex-valued permittivity is described by:
\[\epsilon(f) = \epsilon_\infty + \sum_i \frac{\Delta\epsilon_i}{1 - jf\tau_i}\]Example
>>> x = np.linspace(-1, 1, 5) >>> y = np.linspace(-1, 1, 6) >>> z = np.linspace(-1, 1, 7) >>> coords = dict(x=x, y=y, z=z) >>> eps_inf = SpatialDataArray(1+np.random.random((5, 6, 7)), coords=coords) >>> eps1 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> tau1 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> debye_medium = CustomDebye(eps_inf=eps_inf, coeffs=[(eps1,tau1),]) >>> eps = debye_medium.eps_model(200e12)
See also
Debye
A dispersive medium described by the Debye model.
- Notebooks
- Lectures
Attributes
Whether the medium is spatially uniform.
Methods
eps_dataarray_freq
(frequency)Permittivity array at
frequency
.Inherited Common Usage
- eps_inf#
- coeffs#
- property is_spatially_uniform#
Whether the medium is spatially uniform.
- eps_dataarray_freq(frequency)[source]#
Permittivity array at
frequency
.- Parameters:
frequency (float) β Frequency to evaluate permittivity at (Hz).
- Returns:
Tuple[ β
], Union[
], Union[
],
] β The permittivity evaluated at
frequency
.
- __hash__()#
Hash method.