Source code for tidy3d.plugins.smatrix.component_modelers.terminal

"""Tool for generating an S matrix automatically from a Tidy3d simulation and lumped port definitions."""

from __future__ import annotations

from typing import Dict, Tuple, Union

import numpy as np
import pydantic.v1 as pd

from ....components.base import cached_property
from ....components.data.data_array import (
    DataArray,
    FreqDataArray,
)
from ....components.data.monitor_data import (
    MonitorData,
)
from ....components.data.sim_data import SimulationData
from ....components.geometry.utils_2d import snap_coordinate_to_grid
from ....components.microwave.data.monitor_data import AntennaMetricsData
from ....components.monitor import DirectivityMonitor
from ....components.simulation import Simulation
from ....components.source.time import GaussianPulse
from ....components.types import Ax
from ....components.viz import add_ax_if_none, equal_aspect
from ....constants import C_0, OHM
from ....exceptions import Tidy3dError, Tidy3dKeyError, ValidationError
from ....web.api.container import BatchData
from ..data.terminal import PortDataArray, TerminalPortDataArray
from ..ports.base_lumped import AbstractLumpedPort
from ..ports.coaxial_lumped import CoaxialLumpedPort
from ..ports.rectangular_lumped import LumpedPort
from ..ports.wave import WavePort
from .base import FWIDTH_FRAC, AbstractComponentModeler, TerminalPortType


[docs] class TerminalComponentModeler(AbstractComponentModeler): """Tool for modeling two-terminal multiport devices and computing port parameters with lumped and wave ports.""" ports: Tuple[TerminalPortType, ...] = pd.Field( (), title="Terminal Ports", description="Collection of lumped and wave ports associated with the network. " "For each port, one simulation will be run with a source that is associated with the port.", ) radiation_monitors: tuple[DirectivityMonitor, ...] = pd.Field( (), title="Radiation Monitors", description="Facilitates the calculation of figures-of-merit for antennas. " "These monitor will be included in every simulation and record the radiated fields. ", )
[docs] @equal_aspect @add_ax_if_none def plot_sim( self, x: float = None, y: float = None, z: float = None, ax: Ax = None, **kwargs ) -> Ax: """Plot a :class:`.Simulation` with all sources added for each port, for troubleshooting.""" plot_sources = [] for port_source in self.ports: source_0 = port_source.to_source(self._source_time) plot_sources.append(source_0) sim_plot = self.simulation.copy(update=dict(sources=plot_sources)) return sim_plot.plot(x=x, y=y, z=z, ax=ax, **kwargs)
[docs] @equal_aspect @add_ax_if_none def plot_sim_eps( self, x: float = None, y: float = None, z: float = None, ax: Ax = None, **kwargs ) -> Ax: """Plot permittivity of the :class:`.Simulation` with all sources added for each port.""" plot_sources = [] for port_source in self.ports: source_0 = port_source.to_source(self._source_time) plot_sources.append(source_0) sim_plot = self.simulation.copy(update=dict(sources=plot_sources)) return sim_plot.plot_eps(x=x, y=y, z=z, ax=ax, **kwargs)
@cached_property def sim_dict(self) -> Dict[str, Simulation]: """Generate all the :class:`.Simulation` objects for the port parameter calculation.""" sim_dict = {} # internal mesh override and snapping points are automatically generated from lumped elements. lumped_resistors = [port.to_load() for port in self._lumped_ports] # Apply the highest frequency in the simulation to define the grid, rather than the # source's central frequency, to ensure an accurate solution over the entire range grid_spec = self.simulation.grid_spec.copy( update={ "wavelength": C_0 / np.max(self.freqs), } ) # Make an initial simulation with new grid_spec to determine where LumpedPorts are snapped sim_wo_source = self.simulation.updated_copy( grid_spec=grid_spec, lumped_elements=lumped_resistors ) snap_centers = dict() for port in self._lumped_ports: port_center_on_axis = port.center[port.injection_axis] new_port_center = snap_coordinate_to_grid( sim_wo_source.grid, port_center_on_axis, port.injection_axis ) snap_centers[port.name] = new_port_center # Create monitors and snap to the center positions field_monitors = [ mon for port in self.ports for mon in port.to_field_monitors( self.freqs, snap_center=snap_centers.get(port.name), grid=sim_wo_source.grid ) ] new_mnts = list(self.simulation.monitors) + field_monitors if self.radiation_monitors is not None: new_mnts = new_mnts + list(self.radiation_monitors) new_lumped_elements = list(self.simulation.lumped_elements) + [ port.to_load(snap_center=snap_centers[port.name]) for port in self._lumped_ports ] update_dict = dict( monitors=new_mnts, lumped_elements=new_lumped_elements, ) # This is the new default simulation will all shared components added sim_wo_source = sim_wo_source.copy(update=update_dict) # Next, simulations are generated that include the source corresponding with the excitation port for port in self._lumped_ports: port_source = port.to_source( self._source_time, snap_center=snap_centers[port.name], grid=sim_wo_source.grid ) task_name = self._task_name(port=port) sim_dict[task_name] = sim_wo_source.updated_copy(sources=[port_source]) # Check final simulations for grid size at lumped ports for _, sim in sim_dict.items(): TerminalComponentModeler._check_grid_size_at_ports(sim, self._lumped_ports) # Now, create simulations with wave port sources and mode solver monitors for computing port modes for wave_port in self._wave_ports: mode_monitor = wave_port.to_mode_solver_monitor(freqs=self.freqs) # Source is placed just before the field monitor of the port mode_src_pos = wave_port.center[wave_port.injection_axis] + self._shift_value_signed( wave_port ) port_source = wave_port.to_source(self._source_time, snap_center=mode_src_pos) new_mnts_for_wave = new_mnts + [mode_monitor] update_dict = dict(monitors=new_mnts_for_wave, sources=[port_source]) task_name = self._task_name(port=wave_port) sim_dict[task_name] = sim_wo_source.copy(update=update_dict) return sim_dict @cached_property def _source_time(self): """Helper to create a time domain pulse for the frequency range of interest.""" freq0 = np.mean(self.freqs) fdiff = max(self.freqs) - min(self.freqs) fwidth = max(fdiff, freq0 * FWIDTH_FRAC) return GaussianPulse( freq0=freq0, fwidth=fwidth, remove_dc_component=self.remove_dc_component ) def _construct_smatrix(self) -> TerminalPortDataArray: """Post process :class:`.BatchData` to generate scattering matrix.""" return self._internal_construct_smatrix(batch_data=self.batch_data) def _internal_construct_smatrix(self, batch_data: BatchData) -> TerminalPortDataArray: """Post process :class:`.BatchData` to generate scattering matrix, for internal use only.""" port_names = [port.name for port in self.ports] values = np.zeros( (len(self.freqs), len(port_names), len(port_names)), dtype=complex, ) coords = dict( f=np.array(self.freqs), port_out=port_names, port_in=port_names, ) a_matrix = TerminalPortDataArray(values, coords=coords) b_matrix = a_matrix.copy(deep=True) # Tabulate the reference impedances at each port and frequency port_impedances = self._port_reference_impedances(batch_data=batch_data) # loop through source ports for port_in in self.ports: sim_data = batch_data[self._task_name(port=port_in)] a, b = self.compute_power_wave_amplitudes_at_each_port(port_impedances, sim_data) indexer = dict(f=a.f, port_in=port_in.name, port_out=a.port) a_matrix.loc[indexer] = a b_matrix.loc[indexer] = b s_matrix = self.ab_to_s(a_matrix, b_matrix) return s_matrix @pd.validator("simulation") def _validate_3d_simulation(cls, val): """Error if :class:`.Simulation` is not a 3D simulation""" if val.size.count(0.0) > 0: raise ValidationError( f"'{cls.__name__}' must be setup with a 3D simulation with all sizes greater than 0." ) return val @pd.validator("radiation_monitors") def _validate_radiation_monitors(cls, val, values): freqs = set(values.get("freqs")) for rad_mon in val: mon_freqs = rad_mon.freqs is_subset = freqs.issuperset(mon_freqs) if not is_subset: raise ValidationError( f"The frequencies in the radiation monitor '{rad_mon.name}' " f"must be equal to or a subset of the frequencies in the '{cls.__name__}'." ) return val @staticmethod def _check_grid_size_at_ports(simulation: Simulation, ports: list[Union[AbstractLumpedPort]]): """Raises :class:`.SetupError` if the grid is too coarse at port locations""" yee_grid = simulation.grid.yee for port in ports: port._check_grid_size(yee_grid)
[docs] def compute_power_wave_amplitudes_at_each_port( self, port_reference_impedances: PortDataArray, sim_data: SimulationData ) -> tuple[PortDataArray, PortDataArray]: """Compute the incident and reflected power wave amplitudes at each port. The computed amplitudes have not been normalized. Parameters ---------- port_reference_impedances : :class:`.PortDataArray` Reference impedance at each port. sim_data : :class:`.SimulationData` Results from the simulation. Returns ------- tuple[:class:`.PortDataArray`, :class:`.PortDataArray`] Incident (a) and reflected (b) power wave amplitudes at each port. """ port_names = [port.name for port in self.ports] values = np.zeros( (len(self.freqs), len(port_names)), dtype=complex, ) coords = dict( f=np.array(self.freqs), port=port_names, ) V_matrix = PortDataArray(values, coords=coords) I_matrix = V_matrix.copy(deep=True) a = V_matrix.copy(deep=True) b = V_matrix.copy(deep=True) for port_out in self.ports: V_out, I_out = self.compute_port_VI(port_out, sim_data) indexer = dict(port=port_out.name) V_matrix.loc[indexer] = V_out I_matrix.loc[indexer] = I_out V_numpy = V_matrix.values I_numpy = I_matrix.values Z_numpy = port_reference_impedances.values # Check to make sure sign is consistent for all impedance values self._check_port_impedance_sign(Z_numpy) # # Check for negative real part of port impedance and flip the V and Z signs accordingly negative_real_Z = np.real(Z_numpy) < 0 V_numpy = np.where(negative_real_Z, -V_numpy, V_numpy) Z_numpy = np.where(negative_real_Z, -Z_numpy, Z_numpy) F_numpy = TerminalComponentModeler._compute_F(Z_numpy) # Equation 4.67 - Pozar - Microwave Engineering 4ed a.values = F_numpy * (V_numpy + Z_numpy * I_numpy) b.values = F_numpy * (V_numpy - np.conj(Z_numpy) * I_numpy) return a, b
[docs] @staticmethod def compute_port_VI( port_out: TerminalPortType, sim_data: SimulationData ) -> tuple[FreqDataArray, FreqDataArray]: """Compute the port voltages and currents. Parameters ---------- port_out : ``TerminalPortType`` Port for computing voltage and current. sim_data : :class:`.SimulationData` Results from simulation containing field data. Returns ------- tuple[FreqDataArray, FreqDataArray] Voltage and current values at the port as frequency arrays. """ voltage = port_out.compute_voltage(sim_data) current = port_out.compute_current(sim_data) return voltage, current
[docs] @staticmethod def compute_power_wave_amplitudes( port: Union[LumpedPort, CoaxialLumpedPort], sim_data: SimulationData ) -> tuple[FreqDataArray, FreqDataArray]: """Compute the incident and reflected power wave amplitudes at a lumped port. The computed amplitudes have not been normalized. Parameters ---------- port : Union[:class:`.LumpedPort`, :class:`.CoaxialLumpedPort`] Port for computing voltage and current. sim_data : :class:`.SimulationData` Results from the simulation. Returns ------- tuple[FreqDataArray, FreqDataArray] Incident (a) and reflected (b) power wave amplitude frequency arrays. """ voltage, current = TerminalComponentModeler.compute_port_VI(port, sim_data) # Amplitudes for the incident and reflected power waves a = (voltage + port.impedance * current) / 2 / np.sqrt(np.real(port.impedance)) b = (voltage - port.impedance * current) / 2 / np.sqrt(np.real(port.impedance)) return a, b
[docs] @staticmethod def compute_power_delivered_by_port( port: Union[LumpedPort, CoaxialLumpedPort], sim_data: SimulationData ) -> FreqDataArray: """Compute the power delivered to the network by a lumped port. Parameters ---------- port : Union[:class:`.LumpedPort`, :class:`.CoaxialLumpedPort`] Port for computing voltage and current. sim_data : :class:`.SimulationData` Results from the simulation. Returns ------- FreqDataArray Power in units of Watts as a frequency array. """ a, b = TerminalComponentModeler.compute_power_wave_amplitudes(sim_data=sim_data, port=port) # Power delivered is the incident power minus the reflected power return 0.5 * (np.abs(a) ** 2 - np.abs(b) ** 2)
[docs] @staticmethod def ab_to_s( a_matrix: TerminalPortDataArray, b_matrix: TerminalPortDataArray ) -> TerminalPortDataArray: """Get the scattering matrix given the power wave matrices.""" # Ensure dimensions are ordered properly a_matrix = a_matrix.transpose(*TerminalPortDataArray._dims) b_matrix = b_matrix.transpose(*TerminalPortDataArray._dims) s_matrix = a_matrix.copy(deep=True) a_vals = s_matrix.copy(deep=True).values b_vals = b_matrix.copy(deep=True).values s_vals = np.matmul(b_vals, AbstractComponentModeler.inv(a_vals)) s_matrix.data = s_vals return s_matrix
[docs] @staticmethod def s_to_z( s_matrix: TerminalPortDataArray, reference: Union[complex, PortDataArray] ) -> DataArray: """Get the impedance matrix given the scattering matrix and a reference impedance.""" # Ensure dimensions are ordered properly z_matrix = s_matrix.transpose(*TerminalPortDataArray._dims).copy(deep=True) s_vals = z_matrix.values eye = np.eye(len(s_matrix.port_out.values), len(s_matrix.port_in.values)) if isinstance(reference, PortDataArray): # From Equation 4.68 - Pozar - Microwave Engineering 4ed # Ensure that Zport, F, and Finv act as diagonal matrices when multiplying by left or right shape_left = (len(s_matrix.f), len(s_matrix.port_out), 1) shape_right = (len(s_matrix.f), 1, len(s_matrix.port_in)) Zport = reference.values.reshape(shape_right) F = TerminalComponentModeler._compute_F(Zport).reshape(shape_right) Finv = (1.0 / F).reshape(shape_left) FinvSF = Finv * s_vals * F RHS = eye * np.conj(Zport) + FinvSF * Zport LHS = eye - FinvSF z_vals = np.matmul(AbstractComponentModeler.inv(LHS), RHS) else: # Simpler case when all port impedances are the same z_vals = ( np.matmul(AbstractComponentModeler.inv(eye - s_vals), (eye + s_vals)) * reference ) z_matrix.data = z_vals return z_matrix
@cached_property def port_reference_impedances(self) -> PortDataArray: """The reference impedance used at each port for definining power wave amplitudes.""" return self._port_reference_impedances(self.batch_data) def _port_reference_impedances(self, batch_data: BatchData) -> PortDataArray: """Tabulates the reference impedance of each port at each frequency using the supplied :class:`.BatchData`. """ port_names = [port.name for port in self.ports] values = np.zeros( (len(self.freqs), len(port_names)), dtype=complex, ) coords = dict(f=np.array(self.freqs), port=port_names) port_impedances = PortDataArray(values, coords=coords) for port in self.ports: if isinstance(port, WavePort): # Mode solver data for each wave port is stored in its associated SimulationData sim_data_port = batch_data[self._task_name(port=port)] # WavePorts have a port impedance calculated from its associated modal field distribution # and is frequency dependent. impedances = port.compute_port_impedance(sim_data_port).values port_impedances.loc[dict(port=port.name)] = impedances.squeeze() else: # LumpedPorts have a constant reference impedance port_impedances.loc[dict(port=port.name)] = np.full(len(self.freqs), port.impedance) port_impedances = TerminalComponentModeler._set_port_data_array_attributes(port_impedances) return port_impedances @staticmethod def _compute_F(Z_numpy: np.array): """Helper to convert port impedance matrix to F, which is used for computing generalized scattering parameters.""" return 1.0 / (2.0 * np.sqrt(np.real(Z_numpy))) @cached_property def _lumped_ports(self) -> list[AbstractLumpedPort]: """A list of all lumped ports in the ``TerminalComponentModeler``""" return [port for port in self.ports if isinstance(port, AbstractLumpedPort)] @cached_property def _wave_ports(self) -> list[WavePort]: """A list of all wave ports in the ``TerminalComponentModeler``""" return [port for port in self.ports if isinstance(port, WavePort)] @staticmethod def _set_port_data_array_attributes(data_array: PortDataArray) -> PortDataArray: """Helper to set additional metadata for ``PortDataArray``.""" data_array.name = "Z0" return data_array.assign_attrs(units=OHM, long_name="characteristic impedance") @staticmethod def _check_port_impedance_sign(Z_numpy: np.ndarray): """Sanity check for consistent sign of real part of Z for each port across all frequencies.""" for port_idx in range(Z_numpy.shape[1]): port_Z = Z_numpy[:, port_idx] signs = np.sign(np.real(port_Z)) if not np.all(signs == signs[0]): raise Tidy3dError( f"Inconsistent sign of real part of Z detected for port {port_idx}. " "If you received this error, please create an issue in the Tidy3D " "github repository." )
[docs] def get_radiation_monitor_by_name(self, monitor_name: str) -> DirectivityMonitor: """Find and return a :class:`.DirectivityMonitor` monitor by its name. Parameters ---------- monitor_name : str Name of the monitor to find. Returns ------- :class:`.DirectivityMonitor` The monitor matching the given name. Raises ------ ``Tidy3dKeyError`` If no monitor with the given name exists. """ for monitor in self.radiation_monitors: if monitor.name == monitor_name: return monitor raise Tidy3dKeyError(f"No radiation monitor named '{monitor_name}'.")
def _monitor_data_at_port_amplitude( self, port: TerminalPortType, sim_data: SimulationData, monitor_data: MonitorData, a_port: Union[FreqDataArray, complex], ) -> MonitorData: """Normalize the monitor data to a desired complex amplitude of a port, represented by ``a_port``, where :math:`\\frac{1}{2}|a|^2` is the power incident from the port into the system. """ a_raw, _ = self.compute_power_wave_amplitudes_at_each_port( self.port_reference_impedances, sim_data ) a_raw_port = a_raw.sel(port=port.name) if not isinstance(a_port, FreqDataArray): freqs = list(monitor_data.monitor.freqs) array_vals = a_port * np.ones(len(freqs)) a_port = FreqDataArray(array_vals, coords=dict(f=freqs)) scale_array = a_port / a_raw_port return monitor_data.scale_fields_by_freq_array(scale_array, method="nearest")
[docs] def get_antenna_metrics_data( self, port_amplitudes: dict[str, complex] = None, monitor_name: str = None ) -> AntennaMetricsData: """Calculate antenna parameters using superposition of fields from multiple port excitations. The method computes the radiated far fields and port excitation power wave amplitudes for a superposition of port excitations, which can be used to analyze antenna radiation characteristics. Parameters ---------- port_amplitudes : dict[str, complex] = None Dictionary mapping port names to their desired excitation amplitudes. For each port, :math:`\\frac{1}{2}|a|^2` represents the incident power from that port into the system. If None, uses only the first port without any scaling of the raw simulation data. monitor_name : str = None Name of the :class:`.DirectivityMonitor` to use for calculating far fields. If None, uses the first monitor in `radiation_monitors`. Returns ------- :class:`.AntennaMetricsData` Container with antenna parameters including directivity, gain, and radiation efficiency, computed from the superposition of fields from all excited ports. """ # Use the first port as default if none specified if port_amplitudes is None: port_amplitudes = {self.ports[0].name: None} port_names = [port.name for port in self.ports] # Check port names, and create map from port to amplitude port_dict = {} for key in port_amplitudes.keys(): port = self.get_port_by_name(port_name=key) port_dict[port] = port_amplitudes[key] # Get the radiation monitor, use first as default # if none specified if monitor_name is None: rad_mon = self.radiation_monitors[0] else: rad_mon = self.get_radiation_monitor_by_name(monitor_name) # Create data arrays for holding the superposition of all port power wave amplitudes f = list(rad_mon.freqs) coords = dict(f=f, port=port_names) a_sum = PortDataArray(np.zeros((len(f), len(port_names)), dtype=complex), coords=coords) b_sum = a_sum.copy() # Retrieve associated simulation data combined_directivity_data = None for port, amplitude in port_dict.items(): sim_data_port = self.batch_data[self._task_name(port=port)] radiation_data = sim_data_port[rad_mon.name] a, b = self.compute_power_wave_amplitudes_at_each_port( self.port_reference_impedances, sim_data_port ) # Select a possible subset of frequencies a = a.sel(f=f) b = b.sel(f=f) a_raw = a.sel(port=port.name) if amplitude is None: # No scaling performed when amplitude is None scaled_directivity_data = sim_data_port[rad_mon.name] scale_factor = 1.0 else: scaled_directivity_data = self._monitor_data_at_port_amplitude( port, sim_data_port, radiation_data, amplitude ) scale_factor = amplitude / a_raw a = scale_factor * a b = scale_factor * b # Combine the possibly scaled directivity data and the power wave amplitudes if combined_directivity_data is None: combined_directivity_data = scaled_directivity_data else: combined_directivity_data = combined_directivity_data + scaled_directivity_data a_sum += a b_sum += b # Compute and add power measures to results power_incident = np.real(0.5 * a_sum * np.conj(a_sum)).sum(dim="port") power_reflected = np.real(0.5 * b_sum * np.conj(b_sum)).sum(dim="port") return AntennaMetricsData.from_directivity_data( combined_directivity_data, power_incident, power_reflected )